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by David Schulte

In this paper, I am introducing a method for forecasting solar power generation
in Germany. The method consists of transforming time series data, detrending
it, removing the seasonality component, and finally using an ARMA model to
predict future values. Chapter 1 will be an introduction. In Chapter 2, we will
introduce previous work concerning the topic. In Chapter 3, I will present the
data used in this approach. Chapter 4 is the core of this paper, as it includes the
analysis and the conception of the proposed model. At last, Chapter 5 will outline
the future outlook.
For our analysis, we will use Python 3.9 and the statsmodels library.
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Chapter 1

Introduction

Countries all across the globe are increasing the amount of renewable energies in
their power generation sources. One of the main components of this new strategy
is solar power. The technology of solar panels that are essential for this shift to-
wards renewable energy has become more and more sophisticated. At the same
time, more panels are being installed. For example, in Germany, the power gen-
erated by solar power per year has been increased by a factor of 856 between the
years 2000 and 2020. Like all kinds of renewable energies, the generation of solar
power cannot be controlled, as it depends on solar radiation, temperature, and
other factors. Since the amount of energy generated greatly influences the energy
price, variation in solar power generation results in financial risk. The goal of
this paper is to quantify this risk. This is especially important for investors and
industries that heavily depend on stable energy prices, in order to find appro-
priate ways to hedge against the imposed risk. I will model the daily amount of
solar power generation in Germany, and analyze the results.
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Chapter 2

Literature Review

As the usage of renewable energies rapidly increased since the beginning of the
21st century, the modeling of weather and energy generation using renewable
sources has become more important in the field of finance.

Alaton et al. (2002) modeled temperature data and used the market price of
risk to value weather derivatives on the temperature in Stockholm. Campbell
and Diebold (2005) focused on the distribution of temperature and approximated
densities for the temperature in multiple cities in the United States.

Reikard (2009) used an ARIMA model to make short-term forecasts of the
intensity of solar radiation.

Mitrentsis and Lens (2022) used Machine Learning models trained on a set
of features including temperature, humidity, wind speed and radiation, to make
accurate and interpretable short term predictions of solar power generation.

Härdle et al. (2021) used a Gaussian CARMA model of wind power utilization
to prize wind power futures in Germany. This paper is heavily influenced by
their work, as the modeling process is a simplified version of their approach.

What distinguishes this work, is that we will not model weather data but the
solar power generation. We will not rely on other data sources than historical gen-
eration data provided by German transmission system operators. Therefore, our
model does not only incorporate meteorological processes but also the increase
of utilized solar panels in Germany.
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Chapter 3

Data

For this project, we will use the daily solar energy generation in Germany in the
years from 2010 until 2020. The data was collected by Fraunhofer Institute for So-
lar Energy Systems. The daily values are the averages of the corresponding val-
ues per day reported by Germany’s four transmission system operators 50Hertz,
Amprion, TenneT and TransnetBW.
The data can be accessed at: https://energy-charts.info/

FIGURE 3.1: Dataset

https://energy-charts.info/
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Chapter 4

Analysis

4.1 Transformation

The first thing, that stands out, when taking a look at ??, is that there is a very
strong seasonal component in the data. However, this is not the first step in our
preparation process. First, we will examine the distribution of our daily values
and try to transform our data such that the distribution has more similarity to a
normal distribution.

Ũt =
Ut −Umin

Umax −Umin
(4.1)

U∗t = log(Ũt/(1− Ũt)) (4.2)

To assure that our second transformation is well defined, we add/subtract a
small ε value to the minimum/maximum value of Ũ, such that all values are in
the interval (0, 1). Note that both transformations are bijective, which allows us
to do an inverse transformation after modeling.
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FIGURE 4.1: Distribu-
tion of the observed

data

FIGURE 4.2: Distribu-
tion of the transformed

data

As we can see, the result is not perfect but noticeably closer to a normal dis-
tribution, which justifies the next steps in our transformation.

4.2 Seasonality

We will now try to decompose the transformed data into intercept, trend, season-
ality and further variation. To do so, we will apply a linear regression model with
artificially constructed regressors.

U∗t =

Intercept︷︸︸︷
β0 +

Trend︷︸︸︷
β1 · t+

Seasonality︷ ︸︸ ︷
β2 · 4
√

t cos
(

2π
(t− 11)

365

)
+

Residuals︷︸︸︷
Xt (4.3)

While the interpretation of intercept and trend is obvious, the artificial regres-
sor for seasonality requires further explanation. We model the yearly seasonality
by a cosine function with a period of exactly one year. We expect the low of our
solar power generation to be on average around Winter solstice, the shortest day
of the year. This day is exactly 11 days before New Year, which is the beginning
of our time series data per year. That is why we shift the cosine wave by that
amount. The second component that comes into play is that the aptitude of our
cosine function increases over the years. This increase is not linear. After trying
different terms, I ended up using the 4th square root as an increasing factor.
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FIGURE 4.3: Seasonality of the data

Our linear regression computes the following parameters. One has to be care-
ful, when interpreting these results, as we apply the regression on our trans-
formed time series, and not the initial one.

Dep. Variable: y R-squared: 0.724
Model: OLS Adj. R-squared: 0.724
Method: Least Squares F-statistic: 5272.
Date: Thu, 10 Mar 2022 Prob (F-statistic): 0.00
Time: 21:09:03 Log-Likelihood: -4394.5
No. Observations: 4018 AIC: 8795.
Df Residuals: 4015 BIC: 8814.
Df Model: 2

coef std err t P> |t| [0.025 0.975]

beta0 -2.0841 0.023 -91.413 0.000 -2.129 -2.039
beta1 0.0005 9.83e-06 46.923 0.000 0.000 0.000
beta2 -0.2282 0.002 -92.181 0.000 -0.233 -0.223

Omnibus: 507.081 Durbin-Watson: 0.620
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1086.897
Skew: -0.766 Prob(JB): 9.62e-237
Kurtosis: 5.036 Cond. No. 4.64e+03

Our trend coefficient β1 quantifies the trend in our data. It most likely origi-
nates in the continuing development of solar panels in Germany.
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All our coefficients are statistically significant. Moreover, the high value for R2

is remarkable. It proves that most variation of the data originates from its trend
and seasonality.

FIGURE 4.4: Residuals of the regression

We have outliers in our residuals at the beginning of our time series. The
reasons are both the transformation, in which the minimum value becomes very
small after being transformed, as well as the square-root term in our model. Since
the residuals seem reasonable later in the series, we will resort to a simple trick,
namely dropping the first year (2010) from our data set from now on. We can eas-
ily do this, as we are interested in future predictions. Also, we have an abundance
of data in relation to the complexity of our model.

4.3 ARMA

By now, we have determined the strong long-term signals in our data. From
now on, we will focus on short-term correlations. We will inspect the partial
autocorrelation function.
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FIGURE 4.5: PACF of the residuals

We have very strong autocorrelation for one lag and significant values for
up to 10 lags. Based on this insight, a model using either 1 or 10 lags seems
suitable. After trying out both options, I decided upon the one using only one
lag. The residuals for both models are of similar size, and following the principle
of Occam’s razor, we prefer the simpler model. Our ARMA(1,1) model has the
following form.

Xt = c + φ1Xt−1 + θiεt−1 + εt (4.4)

We inspect the fit of the model. These values are computed by making a one-
step-ahead in-sample prediction.

FIGURE 4.6: Model fit
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FIGURE 4.7: Model fit in detail

The statistics of our model are summarized in the following.

Dep. Variable: cleaned No. Observations: 3653
Model: ARIMA(1, 0, 1) Log Likelihood -2738.148
Date: Thu, 10 Mar 2022 AIC 5484.296
Time: 21:09:06 BIC 5509.109
Sample: 01-01-2011 HQIC 5493.132

- 12-31-2020

coef std err z P> |z| [0.025 0.975]

const 0.0593 0.025 2.338 0.019 0.010 0.109
ar.L1 0.6961 0.018 38.043 0.000 0.660 0.732
ma.L1 -0.1208 0.024 -5.031 0.000 -0.168 -0.074
sigma2 0.2621 0.006 43.612 0.000 0.250 0.274

Ljung-Box (L1) (Q): 0.14 Jarque-Bera (JB): 95.96
Prob(Q): 0.71 Prob(JB): 0.00
Heteroskedasticity (H): 1.20 Skew: -0.37
Prob(H) (two-sided): 0.00 Kurtosis: 3.30

We can observe that all coefficients are statistically significant. Especially in-
teresting is the value of of σ2(sigma2), which is the estimated variance of our
residuals after apply the ARMA model.

In the following, we will inspect the distribution of our residuals.
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FIGURE 4.8: Properties of the ARMA residuals

The residuals are nearly normally distributed, with deviations in the left tail
of the distribution. Furthermore, we can observe that the residuals show very
low autocorrelation, further supporting our assumption that an ARMA(1,1) is
sufficient.
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Chapter 5

Conclusion

We have created a model that explains a large part of the variation in our data,
where we exploited the very strong seasonality of solar power generation. After
fitting our model, we can also quantify the variation, it can not explain. This
variation is especially interesting, as it can be interpreted as a risk factor. Thus, it
can be used, when pricing derivatives in the future.

One has to acknowledge that one of the strong points of our model, namely
that it depends solely on past solar power generation data, is also its biggest
weakness. Especially, when making short-term predictions, the incorporation of
real-time meteorological data, as well as, weather forecasts is very promising.
Furthermore, one could differentiate between the different regions of the trans-
mission system operators, instead of aggregating them to the power generation
of the whole country.

Overall, the results, achieved by our model are promising and have the po-
tential to be used as one component in the pricing of derivatives or strategies
involving power trading.
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Chapter 6
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